Search results for " 35R11"

showing 5 items of 5 documents

Four solutions for fractional p-Laplacian equations with asymmetric reactions

2020

We consider a Dirichlet type problem for a nonlinear, nonlocal equation driven by the degenerate fractional p-Laplacian, whose reaction combines a sublinear term depending on a positive parameter and an asymmetric perturbation (superlinear at positive infinity, at most linear at negative infinity). By means of critical point theory and Morse theory, we prove that, for small enough values of the parameter, such problem admits at least four nontrivial solutions: two positive, one negative, and one nodal. As a tool, we prove a Brezis-Oswald type comparison result.

Sublinear functionGeneral MathematicsMathematical analysisDegenerate energy levelsType (model theory)Fractional p-LaplacianCritical point (mathematics)Dirichlet distributionNonlinear systemsymbols.namesakeMathematics - Analysis of PDEsSettore MAT/05 - Analisi Matematicacritical point theory35A15 35R11 58E05p-LaplaciansymbolsFOS: Mathematicsasymmetric reactionsMathematicsMorse theoryAnalysis of PDEs (math.AP)
researchProduct

Representation of solutions and large-time behavior for fully nonlocal diffusion equations

2017

Abstract We study the Cauchy problem for a nonlocal heat equation, which is of fractional order both in space and time. We prove four main theorems: (i) a representation formula for classical solutions, (ii) a quantitative decay rate at which the solution tends to the fundamental solution, (iii) optimal L 2 -decay of mild solutions in all dimensions, (iv) L 2 -decay of weak solutions via energy methods. The first result relies on a delicate analysis of the definition of classical solutions. After proving the representation formula we carefully analyze the integral representation to obtain the quantitative decay rates of (ii). Next we use Fourier analysis techniques to obtain the optimal dec…

Riemann-Liouville derivativeRiemann–Liouville derivativenonlocal diffusion01 natural sciencesdecay of solutionssymbols.namesakeMathematics - Analysis of PDEsFundamental solutionFOS: MathematicsInitial value problemApplied mathematics0101 mathematicsMathematicsfundamental solutionSpacetimeApplied Mathematics010102 general mathematicsta111energy inequalityRandom walk010101 applied mathematicsPrimary 35R11 Secondary 45K05 35C15 47G20Fourier analysisNorm (mathematics)Bounded functionsymbolsHeat equationfractional LaplacianAnalysisAnalysis of PDEs (math.AP)
researchProduct

Landis-type conjecture for the half-Laplacian

2023

In this paper, we study the Landis-type conjecture, i.e., unique continuation property from infinity, of the fractional Schrödinger equation with drift and potential terms. We show that if any solution of the equation decays at a certain exponential rate, then it must be trivial. The main ingredients of our proof are the Caffarelli-Silvestre extension and Armitage’s Liouville-type theorem. peerReviewed

Landis conjecture half-Laplacian Caarelli- Silvestre extension Liouville-type theoremosittaisdifferentiaaliyhtälötMathematics - Analysis of PDEsApplied MathematicsGeneral Mathematicsunique continuation propertyPrimary: 35A02 35B40 35R11. Secondary: 35J05 35J15FOS: MathematicsAnalysis of PDEs (math.AP)
researchProduct

The higher order fractional Calderón problem for linear local operators : Uniqueness

2020

We study an inverse problem for the fractional Schr\"odinger equation (FSE) with a local perturbation by a linear partial differential operator (PDO) of order smaller than the order of the fractional Laplacian. We show that one can uniquely recover the coefficients of the PDO from the Dirichlet-to-Neumann (DN) map associated to the perturbed FSE. This is proved for two classes of coefficients: coefficients which belong to certain spaces of Sobolev multipliers and coefficients which belong to fractional Sobolev spaces with bounded derivatives. Our study generalizes recent results for the zeroth and first order perturbations to higher order perturbations.

osittaisdifferentiaaliyhtälötMathematics - Analysis of PDEsGeneral MathematicsSobolev multipliersFractional Calderón problemMathematics::Spectral Theory35R30 35R11Fractional Schrödinger equationinversio-ongelmat
researchProduct

Short time existence of the classical solution to the fractional mean curvature flow

2019

Abstract We establish short-time existence of the smooth solution to the fractional mean curvature flow when the initial set is bounded and C 1 , 1 -regular. We provide the same result also for the volume preserving fractional mean curvature flow.

Mathematics - Differential Geometry01 natural sciencesclassical solutiondifferentiaaligeometriaMathematics - Analysis of PDEsfractional perimeterFOS: Mathematicsshort time existence0101 mathematicsMathematical PhysicsMathematicsosittaisdifferentiaaliyhtälötMean curvature flowApplied Mathematics010102 general mathematicsMathematical analysis010101 applied mathematicsVolume (thermodynamics)Differential Geometry (math.DG)Bounded functionfractional mean curvature flowFractional perimeterShort time existence53C44 35R11Mathematics::Differential GeometryClassical solutionAnalysisAnalysis of PDEs (math.AP)Fractional mean curvature flow
researchProduct